A servomechanism is a specialized feedback-control device. Servomechanisms are used to control mechanical things such as motors, steering mechanisms, and robots.

Servomechanisms are used extensively in robotics. A robot controller can tell a servomechanism to move in certain ways that depend on the inputs from sensors. Multiple servomechanisms, when interconnected and controlled by a sophisticated computer, can do complex tasks such as cook a meal. A set of servomechanisms, including associated circuits and hardware, and intended for a specific task, constitutes a servo system. Servo systems do precise, often repetitive, mechanical chores.

A computer can control a servo system made up of many servomechanisms. For example, an unmanned robotic warplane (also known as a drone) can be programmed to take off, fly a mission, return, and land. Servo systems can be programmed to do assembly-line work and other tasks that involve repetitive movement, precision, and endurance.

A servo robot is a robot whose movement is programmed into a computer. The robot follows the instructions given by the program, and carries out precise motions on that basis. Servo robots can be categorized according to the way they move. In continuous-path motion, the robot mechanism can stop anywhere along its path. In point-to-point motion, it can stop only at specific points in its path. Servo robots can be easily programmed and reprogrammed. This might be done by exchanging diskettes, by manual data entry, or by more exotic methods such as a teach box.

You may also like...